Technetium | History and definition of the Technetium | technetium 99m | technetium element

Technetium is the chemical element with atomic number 43 and symbol Tc. It is the lowest atomic number element without any stable isotopes; every form of it is radioactive. Nearly all technetium is produced synthetically and only minute amounts are found in nature. Naturally occurring technetium occurs as a spontaneous fission product in uranium ore or by neutron capture in molybdenum ores. The chemical properties of this silvery gray, crystalline transition metal are intermediate between rhenium and manganese.

Many of technetium's properties were predicted by Dmitri Mendeleev before the element was discovered. Mendeleev noted a gap in his periodic table and gave the undiscovered element the provisional name ekamanganese (Em). In 1937 technetium (specifically the technetium-97 isotope) became the first predominantly artificial element to be produced, hence its name (from the Greek τεχνητός, meaning "artificial").

Its short-lived gamma ray-emitting nuclear isomer—technetium-99m—is used in nuclear medicine for a wide variety of diagnostic tests. Technetium-99 is used as a gamma ray-free source of beta particles. Long-lived technetium isotopes produced commercially are by-products of fission of uranium-235 in nuclear reactors and are extracted from nuclear fuel rods. Because no isotope of technetium has a half-life longer than 4.2 million years (technetium-98), its detection in red giants in 1952, which are billions of years old, helped bolster the theory that stars can produce heavier elements.

From the 1860s through 1871, early forms of the periodic table proposed by Dimitri Mendeleev contained a gap between molybdenum (element 42) and ruthenium (element 44). In 1871, Mendeleev predicted this missing element would occupy the empty place below manganese and therefore have similar chemical properties. Mendeleev gave it the provisional name ekamanganese (eka- from the Sanskrit words for one), because the predicted element was one place down from the known element manganese.

Many early researchers, both before and after the periodic table was published, were eager to be the first to discover and name the missing element; its location in the table suggested that it should be easier to find than other undiscovered elements. It was first thought to have been found in platinum ores in 1828 and was given the name polinium, but turned out to be impure iridium. Then, in 1846, the element ilmenium was claimed to have been discovered, but later was determined to be impure niobium. This mistake was repeated in 1847 with the "discovery" of pelopium.

In 1877, the Russian chemist Serge Kern reported discovering the missing element in platinum ore. Kern named what he thought was the new element davyum (after the noted English chemist Sir Humphry Davy), but it was eventually determined to be a mixture of iridium, rhodium and iron. Another candidate, lucium, followed in 1896, but it was determined to be yttrium. Then in 1908, the Japanese chemist Masataka Ogawa found evidence in the mineral thorianite, which he thought indicated the presence of element 43. Ogawa named the element nipponium, after Japan (which is Nippon in Japanese). In 2004, H. K Yoshihara used "a record of X-ray spectrum of Ogawa's nipponium sample from thorianite [which] was contained in a photographic plate preserved by his family. The spectrum was read and indicated the absence of the element 43 and the presence of the element 75 (rhenium)."

German chemists Walter Noddack, Otto Berg, and Ida Tacke reported the discovery of element 75 and element 43 in 1925, and named element 43 masurium (after Masuria in eastern Prussia, now in Poland, the region where Walter Noddack's family originated). The group bombarded columbite with a beam of electrons and deduced element 43 was present by examining X-ray diffraction spectrograms. The wavelength of the X-rays produced is related to the atomic number by a formula derived by Henry Moseley in 1913. The team claimed to detect a faint X-ray signal at a wavelength produced by element 43. Later experimenters could not replicate the discovery, and it was dismissed as an error for many years. Still, in 1933, a series of articles on the discovery of elements quoted the name masurium for element 43. Debate still exists as to whether the 1925 team actually did discover element 43.

The discovery of element 43 was finally confirmed in a December 1936 experiment at the University of Palermo in Sicily conducted by Carlo Perrier and Emilio Segrè. In mid-1936, Segrè visited the United States, first Columbia University in New York and then the Lawrence Berkeley National Laboratory in California. He persuaded cyclotron inventor Ernest Lawrence to let him take back some discarded cyclotron parts that had become radioactive. Lawrence mailed him a molybdenum foil that had been part of the deflector in the cyclotron.

Segrè enlisted his colleague Perrier to attempt to prove, through comparative chemistry, that the molybdenum activity was indeed Z = 43. They succeeded in isolating the isotopes technetium-95 and technetium-97. University of Palermo officials wanted them to name their discovery "panormium", after the Latin name for Palermo, Panormus. In 1947 element 43 was named after the Greek word τεχνητός, meaning "artificial", since it was the first element to be artificially produced. Segrè returned to Berkeley and met Glenn T. Seaborg. They isolated the metastable isotope technetium-99m, which is now used in some ten million medical diagnostic procedures annually.

In 1952, astronomer Paul W. Merrill in California detected the spectral signature of technetium (in particular, light with wavelength of 403.1 nm, 423.8 nm, 426.8 nm, and 429.7 nm) in light from S-type red giants. The stars were near the end of their lives, yet were rich in this short-lived element, meaning nuclear reactions within the stars must be producing it. This evidence was used to bolster the then-unproven theory that stars are where nucleosynthesis of the heavier elements occurs. More recently, such observations provided evidence that elements were being formed by neutron capture in the s-process.

Since its discovery, there have been many searches in terrestrial materials for natural sources of technetium. In 1962, technetium-99 was isolated and identified in pitchblende from the Belgian Congo in extremely small quantities (about 0.2 ng/kg); there it originates as a spontaneous fission product of uranium-238. There is also evidence that the Oklo natural nuclear fission reactor produced significant amounts of technetium-99, which has since decayed into ruthenium-99.

The long half-life of technetium-99 and its ability to form an anionic species makes it a major concern for long-term disposal of radioactive waste. Many of the processes designed to remove fission products in reprocessing plants aim at cationic species like caesium (e.g., caesium-137) and strontium (e.g., strontium-90). Hence the pertechnetate is able to escape through these treatment processes. Current disposal options favor burial in continental, geologically stable rock. The primary danger with such a course is that the waste is likely to come into contact with water, which could leach radioactive contamination into the environment. The anionic pertechnetate and iodide do not adsorb well onto the surfaces of minerals, so they are likely to be washed away. By comparison plutonium, uranium, and caesium are much more able to bind to soil particles. For this reason, the environmental chemistry of technetium is an active area of research.

An alternative disposal method, transmutation, has been demonstrated at CERN for technetium-99. This transmutation process is one in which the technetium (technetium-99 as a metal target) is bombarded with neutrons to form the short-lived technetium-100 (half life = 16 seconds) which decays by beta decay to ruthenium-100. If recovery of usable ruthenium is a goal, an extremely pure technetium target is needed; if small traces of the minor actinides such as americium and curium are present in the target, they are likely to undergo fission and form more fission products which increase the radioactivity of the irradiated target. The formation of ruthenium-106 (half-life 374 days) from the 'fresh fission' is likely to increase the activity of the final ruthenium metal, which will then require a longer cooling time after irradiation before the ruthenium can be used.

The actual production of technetium-99 from spent nuclear fuel is a long process. During fuel reprocessing, it appears in the waste liquid, which is highly radioactive. After sitting for several years, the radioactivity falls to a point where extraction of the long-lived isotopes, including technetium-99, becomes feasible. Several chemical extraction processes are then used, yielding technetium-99 metal of high purity.

Technetium star

A Technetium star, or more properly a Tc-rich star, is a star whose stellar spectrum contains absorption lines of the light radioactive metal technetium. The most stable isotope of technetium is 98Tc with a half-life of 4.2 million years, which is too short a time to allow the metal to be material from before the star's creation. Therefore, the detection in 1952 of technetium in stellar spectra provided unambiguous proof of nucleosynthesis in stars, one of the more extreme cases being R Geminorum.

Stars containing technetium belong to the class of so-called asymptotic giant branch stars (AGB) — stars that are like red giants, but with a slightly higher luminosity, and which burn hydrogen in an inner shell. Members of this class of stars switch to helium shell burning with an interval of some 100,000 years, in so-called "dredge-ups". Technetium stars belong to the classes M, MS, S, SC and C-N. They are most often variable stars of the long period variable types.

Current research indicate that the presence of technetium in AGB stars occurs after some evolution, and that a significant amount of these stars do not exhibit the metal in their spectra. The presence of technetium seems to be related to the so-called "third dredge-up" in the history of the stars.