Phosphorus | Understanding and definition of Phosphorus | Function and use of phosphorus

Phosphorus is the chemical element that has the symbol P and atomic number 15. A multivalent nonmetal of the nitrogen group, phosphorus as a mineral is almost always present in its maximally oxidized state, as inorganic phosphate rocks. Elemental phosphorus exists in two major forms – white phosphorus and red phosphorus, but due to its high reactivity, phosphorus is never found as a free element on Earth.

The first form of elemental phosphorus to be produced (white phosphorus, in 1669) emits a faint glow upon exposure to oxygen – hence its name given from Greek mythology, Φωσφόρος meaning "light-bearer" (Latin Lucifer), referring to the "Morning Star", the planet Venus. Although the term "phosphorescence", meaning glow after illumination, derives from this property of phosphorus, the glow of phosphorus originates from oxidation of the white (but not red) phosphorus and should be called chemiluminescence.

Phosphorus compounds are used in explosives, nerve agents, friction matches, fireworks, pesticides, toothpastes, and detergents.

Phosphorus is a component of DNA, RNA, ATP, and also the phospholipids that form all cell membranes. It is thus an essential element for all living cells, and organisms tend to accumulate and concentrate it. For example, elemental phosphorus was historically first isolated from the sediment in human urine, and bone ash was an important early phosphate source. Low phosphate levels are an important limit to growth in some aquatic systems. Today, the most important commercial use of phosphorus-based chemicals is the production of fertilizers, to replace the phosphorus that plants remove from the soil.

Phosphorus has several forms (allotropes) that have strikingly different properties. The two most common allotropes are white phosphorus and red phosphorus. Red phosphorus is an intermediate phase between white and violet phosphorus. Another form, scarlet phosphorus, is obtained by allowing a solution of white phosphorus in carbon disulfide to evaporate in sunlight. Black phosphorus is obtained by heating white phosphorus under high pressures (about 12,000 standard atmospheres or 1.2 GPa). In appearance, properties, and structure, it resembles graphite, being black and flaky, a conductor of electricity, and has puckered sheets of linked atoms. Another allotrope is diphosphorus; it contains a phosphorus dimer as a structural unit and is highly reactive.

White phosphorus has two forms, low-temperature β form and high-temperature α form. They both contain a phosphorus P4 tetrahedron as a structural unit, in which each atom is bound to the other three atoms by a single bond. This P4 tetrahedron is also present in liquid and gaseous phosphorus up to the temperature of 800 °C when it starts decomposing to P2 molecules. White phosphorus is the least stable, the most reactive, more volatile, less dense, and more toxic than the other allotropes. The toxicity of white phosphorus led to its discontinued use in matches. White phosphorus is thermodynamically unstable at normal condition and will gradually change to red phosphorus. This transformation, which is accelerated by light and heat, makes white phosphorus almost always contain some red phosphorus and therefore appear yellow. For this reason, it is also called yellow phosphorus. It glows greenish in the dark (when exposed to oxygen), is highly flammable and pyrophoric (self-igniting) upon contact with air as well as toxic (causing severe liver damage on ingestion). Because of pyrophoricity, white phosphorus is used as an additive in napalm. The odour of combustion of this form has a characteristic garlic smell, and samples are commonly coated with white "(di)phosphorus pentoxide", which consists of P4O10 tetrahedra with oxygen inserted between the phosphorus atoms and at their vertices. White phosphorus is insoluble in water but soluble in carbon disulfide.

The white allotrope can be produced using several different methods. In one process, calcium phosphate, which is derived from phosphate rock, is heated in an electric or fuel-fired furnace in the presence of carbon and silica. Elemental phosphorus is then liberated as a vapour and can be collected under phosphoric acid. This process is similar to the first synthesis of phosphorus from calcium phosphate in urine.

In the red phosphorus, one of the P4 bonds is broken, and one additional bond is formed with a neighbouring tetrahedron resulting in a more chain-like structure. Red phosphorus may be formed by heating white phosphorus to 250 °C (482 °F) or by exposing white phosphorus to sunlight. Phosphorus after this treatment exists as an amorphous network of atoms that reduces strain and gives greater stability; further heating results in the red phosphorus becoming crystalline. Therefore red phosphorus is not a certain allotrope, but rather an intermediate phase between the white and violet phosphorus, and most of its properties have a range of values. Red phosphorus does not catch fire in air at temperatures below 260 °C, whereas white phosphorus ignites at about 30 °C.

Violet phosphorus is a thermodynamic stable form of phosphorus that can be produced by day-long temper of red phosphorus above 550 °C. In 1865, Hittorf discovered that when phosphorus was recrystallized from molten lead, a red/purple form is obtained. Therefore this form is sometimes known as "Hittorf's phosphorus" (or violet or α-metallic phosphorus).

Black phosphorus is the least reactive allotrope and the thermodynamic stable form below 550 °C. It is also known as β-metallic phosphorus and has a structure somewhat resembling that of graphite. High pressures are usually required to produce black phosphorus, but it can also be produced at ambient conditions using metal salts as catalysts.

The diphosphorus allotrope, P2, is stable only at high temperatures. The dimeric unit contains a triple bond and is analogous to N2. The diphosphorus allotrope (P2) can be obtained normally only under extreme conditions (for example, from P4 at 1100 kelvin). Nevertheless, some advancements were obtained in generating the diatomic molecule in homogeneous solution, under normal conditions with the use by some transitional metal complexes (based on, for example, tungsten and niobium).

The discovery of phosphorus is credited to the German alchemist Hennig Brand in 1669, although other chemists might have discovered phosphorus around the same time. Brand experimented with urine, which contains considerable quantities of dissolved phosphates from normal metabolism. Working in Hamburg, Brand attempted to create the fabled philosopher's stone through the distillation of some salts by evaporating urine, and in the process produced a white material that glowed in the dark and burned brilliantly. It was named phosphorus mirabilis ("miraculous bearer of light"). His process originally involved letting urine stand for days until it gave off a terrible smell. Then he boiled it down to a paste, heated this paste to a high temperature, and led the vapours through water, where he hoped they would condense to gold. Instead, he obtained a white, waxy substance that glowed in the dark. Brand had discovered phosphorus, the first element discovered since antiquity. We now know that Brand produced ammonium sodium hydrogen phosphate, (NH4)NaHPO4. While the quantities were essentially correct (it took about 1,100 L of urine to make about 60 g of phosphorus), it was unnecessary to allow the urine to rot. Later scientists would discover that fresh urine yielded the same amount of phosphorus.

Since that time, phosphors and phosphorescence were used loosely to describe substances that shine in the dark without burning. However, as mentioned above, even though the term phosphorescence was originally coined as a term by analogy with the glow from oxidation of elemental phosphorus, is now reserved for another fundamentally different process—re-emission of light after illumination.

Brand at first tried to keep the method secret, but later sold the recipe for 200 thaler to D Krafft from Dresden, who could now make it as well, and toured much of Europe with it, including England, where he met with Robert Boyle. The secret that it was made from urine leaked out and first Johann Kunckel (1630–1703) in Sweden (1678) and later Boyle in London (1680) also managed to make phosphorus. Boyle states that Krafft gave him no information as to the preparation of phosphorus other than that it was derived from "somewhat that belonged to the body of man". This gave Boyle a valuable clue, however, so that he, too, managed to make phosphorus, and published the method of its manufacture. Later he improved Brand's process by using sand in the reaction (still using urine as base material).

Due to its reactivity with air and many other oxygen-containing substances, phosphorus is not found free in nature but it is widely distributed in many different minerals.

Phosphate rock, which is partially made of apatite (an impure tri-calcium phosphate mineral), is an important commercial source of this element. About 50 percent of the global phosphorus reserves are in the Arab nations. Large deposits of apatite are located in China, Russia, Morocco, Florida, Idaho, Tennessee, Utah, and elsewhere. Albright and Wilson in the United Kingdom and their Niagara Falls plant, for instance, were using phosphate rock in the 1890s and 1900s from Connetable, Tennessee and Florida; by 1950 they were using phosphate rock mainly from Tennessee and North Africa. In the early 1990s Albright and Wilson's purified wet phosphoric acid business was being adversely affected by phosphate rock sales by China and the entry of their long-standing Moroccan phosphate suppliers into the purified wet phosphoric acid business.

White phosphorus was first made commercially, for the match industry in the 19th century, by distilling off phosphorus vapour from precipitated phosphates, mixed with ground coal or charcoal, which was heated in an iron pot, in retort. The precipitated phosphates were made from ground-up bones that had been de-greased and treated with strong acids. Carbon monoxide and other flammable gases produced during the reduction process were burnt off in a flare stack.

This process became obsolete when the submerged-arc furnace for phosphorus production was introduced to reduce phosphate rock. Calcium phosphate (phosphate rock), mostly mined in Florida and North Africa, can be heated to 1,200–1,500 °C with sand, which is mostly SiO2, and coke (impure carbon) to produce vaporized tetraphosphorus, P4, (melting point 44.2 °C), which is subsequently condensed into a white powder under water to prevent oxidation. Even under water, white phosphorus is slowly converted to the more stable red phosphorus allotrope (melting point 597 °C). Both the white and red allotropes of phosphorus are insoluble in water.

The electric furnace method allowed production to increase to the point where phosphorus could be used in weapons of war. In World War I it was used in incendiaries, smoke screens and tracer bullets. A special incendiary bullet was developed to shoot at hydrogen-filled Zeppelins over Britain (hydrogen being highly inflammable if it can be ignited). During World War II, Molotov cocktails of benzene and phosphorus were distributed in Britain to specially selected civilians within the British resistance operation, for defence; and phosphorus incendiary bombs were used in war on a large scale. Burning phosphorus is difficult to extinguish and if it splashes onto human skin it has horrific effects (see precautions below).

Today phosphorus production is larger than ever. It is used as a precursor for various chemicals, in particular the herbicide glyphosate sold under the brand name Roundup. Production of white phosphorus takes place at large facilities and it is transported heated in liquid form. Some major accidents have occurred during transportation, train derailments at Brownston, Nebraska and Miamisburg, Ohio led to large fires. The worst accident in recent times was an environmental one in 1968 when phosphorus spilled into the sea from a plant at Placentia Bay, Newfoundland. Thermphos International is Europe's only producer of elemental phosphorus.