Natural gas | Understanding and definition of Natural Gas

Natural gas is a gas consisting primarily of methane, typically with 0-20% higher hydrocarbons (primarily ethane). It is found associated with other hydrocarbon fuel, in coal beds, as methane clathrates, and is an important fuel source and a major feedstock for fertilizers.

Most natural gas is created by two mechanisms: biogenic and thermogenic. Biogenic gas is created by methanogenic organisms in marshes, bogs, landfills, and shallow sediments. Deeper in the earth, at greater temperature and pressure, thermogenic gas is created from buried organic material.

Before natural gas can be used as a fuel, it must undergo processing to remove almost all materials other than methane. The by-products of that processing include ethane, propane, butanes, pentanes, and higher molecular weight hydrocarbons, elemental sulfur, carbon dioxide, water vapor, and sometimes helium and nitrogen.

Natural gas is often informally referred to as simply gas, especially when compared to other energy sources such as oil or coal.

In the 19th century, natural gas was usually obtained as a byproduct of producing oil, since the small, light gas carbon chains came out of solution as the extracted fluids underwent pressure reduction from the reservoir to the surface, similar to uncapping a bottle of soda pop where the carbon dioxide effervesces. Unwanted natural gas was a disposal problem in the active oil fields. If there was not a market for natural gas near the wellhead it was virtually valueless since it had to be piped to the end user. In the 19th century and early 20th century, such unwanted gas usually was burned off in the oil fields. Today, unwanted gas (or 'stranded' gas without a market) associated with oil extraction often is returned to the reservoir with 'injection' wells while awaiting a possible future market or to repressurize the formation, which can enhance extraction rates from other wells. In regions with a high natural gas demand (such as the United States), pipelines are constructed when economics permit to take the gas from the wellsite to the end consumer.

Another solution is to export the natural gas as a liquid. Gas-to-liquids (GTL) is a developing technology that converts stranded natural gas into synthetic gasoline, diesel or jet fuel through the Fischer-Tropsch process developed in World War II Germany. Such fuel can be transported to users through conventional pipelines and tankers. Proponents claim GTL burns cleaner than comparable petroleum fuels. Most major international oil companies are in an advanced stage of GTL production, with a world-scale (140,000 barrels (22,000 m3) a day) GTL plant in Qatar scheduled to be in production before 2010.

Natural gas can be "associated" (found in oil fields) or "non-associated" (isolated in natural gas fields), and is also found in coal beds (as coalbed methane). It sometimes contains significant amounts of ethane, propane, butane, and pentane—heavier hydrocarbons removed for commercial use prior to the methane being sold as a consumer fuel or chemical plant feedstock. Non-hydrocarbons such as carbon dioxide, nitrogen, helium (rarely), and hydrogen sulfide must be removed also before the natural gas can be transported.

Natural gas is commercially extracted from oil fields and natural gas fields. Gas extracted from oil wells is called casinghead gas or associated gas. The natural gas industry is extracting gas from increasingly more challenging resource types: sour gas, tight gas, shale gas, and coalbed methane.

It is estimated that there are also about 900 trillion cubic meters of "unconventional" gas such as shale gas, of which 180 trillion may be recoverable.

Because natural gas is not a pure product, as the reservoir pressure drops when non-associated gas is extracted from a field under supercritical (pressure/temperature) conditions, the higher molecular weight components may partially condense upon isothermic depressurizing—an effect called retrograde condensation. The liquid thus formed may get trapped as the pores of the gas reservoir get deposited. One method to deal with this problem is to re-inject dried gas free of condensate to maintain the underground pressure and to allow re-evaporation and extraction of condensates. More frequently, the liquid condenses at the surface, and this is one of the uses of the gas plant to collect this condensate. The resulting liquid is called natural gas liquid (NGL) and has a good commercial value.

When methane-rich gases are produced by the anaerobic decay of non-fossil organic matter (biomass), these are referred to as biogas (or natural biogas). Sources of biogas include swamps, marshes, and landfills (see landfill gas), as well as sewage sludge and manure by way of anaerobic digesters, in addition to enteric fermentation particularly in cattle.

Methanogenic archaea are responsible for all biological sources of methane, some in symbiotic relationships with other life forms, including termites, ruminants, and cultivated crops. Methane released directly into the atmosphere would be considered a pollutant. However, methane in the atmosphere is oxidized, producing carbon dioxide and water. Methane in the atmosphere has a half life of seven years, meaning that if a tonne of methane were emitted today, 500 kilograms would have broken down to carbon dioxide and water after seven years.

Other sources of methane, the principal component of natural gas, include landfill gas, biogas and methane hydrate. Biogas, and especially landfill gas, are already used in some areas, but their use could be greatly expanded. Landfill gas is a type of biogas, but biogas usually refers to gas produced from organic material that has not been mixed with other waste.

Landfill gas is created from the decomposition of waste in landfills. If the gas is not removed, the pressure may get so high that it works its way to the surface, causing damage to the landfill structure, unpleasant odor, vegetation die-off and an explosion hazard. The gas can be vented to the atmosphere, flared or burned to produce electricity or heat. Experimental systems were being proposed for use in parts Hertfordshire, UK and Lyon in France.

Once water vapor is removed, about half of landfill gas is methane. Almost all of the rest is carbon dioxide, but there are also small amounts of nitrogen, oxygen and hydrogen. There are usually trace amounts of hydrogen sulfide and siloxanes, but their concentration varies widely. Landfill gas cannot be distributed through utility natural gas pipelines unless it is cleaned up to less than 3% CO2, and a few parts per million H2S, because CO2 and H2S corrode the pipelines. It is usually more economical to combust the gas on site or within a short distance of the landfill using a dedicated pipeline. Water vapor is often removed, even if the gas is combusted on site. If low temperatures condense water out of the gas, siloxanes can be lowered as well because they tend to condense out with the water vapor. Other non-methane components may also be removed in order to meet emission standards, to prevent fouling of the equipment or for environmental considerations. Co-firing landfill gas with natural gas improves combustion, which lowers emissions.

Gas generated in sewage treatment plants is commonly used to generate electricity. For example, the Hyperion sewage plant in Los Angeles burns 8 million cubic feet of gas per day to generate power New York City utilizes gas to run equipment in the sewage plants, to generate electricity, and in boilers. Using sewage gas to make electricity is not limited to large cities. The city of Bakersfield, California uses cogeneration at its sewer plants. California has 242 sewage wastewater treatment plants, 74 of which have installed anaerobic digesters. The total biopower generation from the 74 plants is about 66 MW.

Biogas is usually produced using agricultural waste materials, such as otherwise unusable parts of plants and manure. Biogas can also be produced by separating organic materials from waste that otherwise goes to landfills. Such method is more efficient than just capturing the landfill gas it produces. Using materials that would otherwise generate no income, or even cost money to get rid of, improves the profitability and energy balance of biogas production.

Anaerobic lagoons produce biogas from manure, while biogas reactors can be used for manure or plant parts. Like landfill gas, biogas is mostly methane and carbon dioxide, with small amounts of nitrogen, oxygen and hydrogen. However, with the exception of pesticides, there are usually lower levels of contaminants.